Downsampling 3D Point Clouds with a Voxelized Grid#
This tutorial covers the process of downsampling / reducing the number of points in a 3D point cloud through a voxelized grid approach.
Note
This tutorial is applicable for execution both within inside and outside a Docker image. It assumes that the pcl-oneapi-tutorials Deb package is installed, and the user has copied the tutorial directory from /opt/intel/pcl/oneapi/tutorials/ to a user-writable directory.
Prepare the environment:
cd <path-to-oneapi-tutorials>/voxel_grid
oneapi_voxel_grid.cpp
should be in the directory with following content:1// SPDX-License-Identifier: Apache-2.0 2// Copyright (C) 2025 Intel Corporation 3#include <pcl/oneapi/filters/voxel_grid.h> 4#include <pcl/io/pcd_io.h> 5#include <pcl/point_types.h> 6#include <pcl/point_cloud.h> 7 8 9int main (int argc, char** argv) 10{ 11 std::cout << "Running on device: " << dpct::get_default_queue().get_device().get_info<sycl::info::device::name>() << "\n"; 12 13 // Read Point Cloud 14 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_( new pcl::PointCloud<pcl::PointXYZ>() ); 15 int result = pcl::io::loadPCDFile("table_scene_lms400.pcd", *cloud_); 16 if (result != 0) 17 { 18 pcl::console::print_info ("Load pcd file failed.\n"); 19 return result; 20 } 21 22 // Prepare Point Cloud Memory (output) 23 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered_( new pcl::PointCloud<pcl::PointXYZ>() ); 24 25 // GPU calculate 26 pcl::oneapi::VoxelGrid<pcl::PointXYZ> vg_oneapi; 27 vg_oneapi.setInputCloud(cloud_); 28 float leafsize= 0.005f; 29 vg_oneapi.setLeafSize (leafsize, leafsize, leafsize); 30 vg_oneapi.filter(*cloud_filtered_); 31 32 // print log 33 std::cout << "[oneapi voxel grid] PointCloud before filtering: " << cloud_->size() << std::endl; 34 std::cout << "[oneapi voxel grid] PointCloud after filtering: " << cloud_filtered_->size() << std::endl; 35}
Source the Intel® oneAPI Base Toolkit environment:
source /opt/intel/oneapi/setvars.sh
(Optional) Set up proxy setting to download test data:
export http_proxy="http://<http_proxy>:port" export https_proxy="http://<https_proxy>:port"
Build the code:
mkdir build && cd build cmake ../ make -j
Run the binary:
./oneapi_voxel_grid
Expected results example:
[oneapi voxel grid] PointCloud before filtering: 460400 [oneapi voxel grid] PointCloud after filtering: 141525
Code Explanation#
Now, let’s explain the code in detail.
First, load the example PCD into a PointCloud<PointXYZ>.
// Read Point Cloud
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_( new pcl::PointCloud<pcl::PointXYZ>() );
int result = pcl::io::loadPCDFile("table_scene_lms400.pcd", *cloud_);
if (result != 0)
{
pcl::console::print_info ("Load pcd file failed.\n");
return result;
}
Then prepare output buffer for filtered result.
// Prepare Point Cloud Memory (output)
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered_( new pcl::PointCloud<pcl::PointXYZ>() );
Next, starts to compute the result.
// GPU calculate
pcl::oneapi::VoxelGrid<pcl::PointXYZ> vg_oneapi;
vg_oneapi.setInputCloud(cloud_);
float leafsize= 0.005f;
vg_oneapi.setLeafSize (leafsize, leafsize, leafsize);
vg_oneapi.filter(*cloud_filtered_);
Result(output log).
// print log
std::cout << "[oneapi voxel grid] PointCloud before filtering: " << cloud_->size() << std::endl;
std::cout << "[oneapi voxel grid] PointCloud after filtering: " << cloud_filtered_->size() << std::endl;