Downsampling 3D Point Clouds with a Voxelized Grid#

This tutorial covers the process of downsampling / reducing the number of points in a 3D point cloud through a voxelized grid approach.

Note

This tutorial is applicable for execution both within inside and outside a Docker image. It assumes that the pcl-oneapi-tutorials Deb package is installed, and the user has copied the tutorial directory from /opt/intel/pcl/oneapi/tutorials/ to a user-writable directory.

  1. Prepare the environment:

    cd <path-to-oneapi-tutorials>/voxel_grid
    
  2. oneapi_voxel_grid.cpp should be in the directory with following content:

     1// SPDX-License-Identifier: Apache-2.0
     2// Copyright (C) 2025 Intel Corporation
     3#include <pcl/oneapi/filters/voxel_grid.h>
     4#include <pcl/io/pcd_io.h>
     5#include <pcl/point_types.h>
     6#include <pcl/point_cloud.h>
     7
     8
     9int main (int argc, char** argv)
    10{
    11  std::cout << "Running on device: " << dpct::get_default_queue().get_device().get_info<sycl::info::device::name>() << "\n";
    12
    13  // Read Point Cloud
    14  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_( new pcl::PointCloud<pcl::PointXYZ>() );
    15  int result = pcl::io::loadPCDFile("table_scene_lms400.pcd", *cloud_);
    16  if (result != 0)
    17  {
    18    pcl::console::print_info ("Load pcd file failed.\n");
    19    return result;
    20  }
    21
    22  // Prepare Point Cloud Memory (output)
    23  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered_( new pcl::PointCloud<pcl::PointXYZ>() );
    24
    25  // GPU calculate
    26  pcl::oneapi::VoxelGrid<pcl::PointXYZ> vg_oneapi;
    27  vg_oneapi.setInputCloud(cloud_);
    28  float leafsize= 0.005f;
    29  vg_oneapi.setLeafSize (leafsize, leafsize, leafsize);
    30  vg_oneapi.filter(*cloud_filtered_);
    31
    32  // print log
    33  std::cout << "[oneapi voxel grid] PointCloud before filtering: " << cloud_->size() << std::endl;
    34  std::cout << "[oneapi voxel grid] PointCloud after filtering: " << cloud_filtered_->size() << std::endl;
    35}
    
  3. Source the Intel® oneAPI Base Toolkit environment:

    source /opt/intel/oneapi/setvars.sh
    
  4. (Optional) Set up proxy setting to download test data:

    export http_proxy="http://<http_proxy>:port"
    export https_proxy="http://<https_proxy>:port"
    
  5. Build the code:

    mkdir build && cd build
    cmake ../
    make -j
    
  6. Run the binary:

    ./oneapi_voxel_grid
    
  7. Expected results example:

    [oneapi voxel grid] PointCloud before filtering: 460400
    [oneapi voxel grid] PointCloud after filtering: 141525
    

Code Explanation#

Now, let’s explain the code in detail.

First, load the example PCD into a PointCloud<PointXYZ>.

// Read Point Cloud
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_( new pcl::PointCloud<pcl::PointXYZ>() );
int result = pcl::io::loadPCDFile("table_scene_lms400.pcd", *cloud_);
if (result != 0)
{
  pcl::console::print_info ("Load pcd file failed.\n");
  return result;
}

Then prepare output buffer for filtered result.

// Prepare Point Cloud Memory (output)
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered_( new pcl::PointCloud<pcl::PointXYZ>() );

Next, starts to compute the result.

// GPU calculate
pcl::oneapi::VoxelGrid<pcl::PointXYZ> vg_oneapi;
vg_oneapi.setInputCloud(cloud_);
float leafsize= 0.005f;
vg_oneapi.setLeafSize (leafsize, leafsize, leafsize);
vg_oneapi.filter(*cloud_filtered_);

Result(output log).

// print log
std::cout << "[oneapi voxel grid] PointCloud before filtering: " << cloud_->size() << std::endl;
std::cout << "[oneapi voxel grid] PointCloud after filtering: " << cloud_filtered_->size() << std::endl;