Performance Guide#
1. Media and AI processing (single stream)#
The Deep Learning Streamer Pipeline Framework combines media processing and AI inference capabilities. The simplest pipeline detects objects in a video stream stored as a file.
For Intel platforms with integrated GPU and/or NPU devices, use the recommended command line:
gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va ! queue ! gvafpscounter ! fakesink
gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! gvadetect model=${MODEL_FILE} device=NPU pre-process-backend=va ! queue ! gvafpscounter ! fakesink
vah264decuses the hardware video decoder to generate output images (VAMemory).gvadetectconsumes VAMemory images (zero-copy operation) and generates inference results.pre-process-backend=vauses the hardware image scaler to resize the VAMemory image into input model tensor dimensions.
When using discrete GPUs, it is recommended to set pre-process-backend=va-surface-sharing
to enforce zero-copy operation between video decoder and AI inference engine. Note that
va-surface-sharing may be slightly slower than the va backend when integrated GPU is used.
The va-surface-sharing option compiles the image scaling layer into the AI model, consuming
GPU compute resources:
gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va-surface-sharing ! queue ! gvafpscounter ! fakesink
While GPU is preferred for hardware-accelerated media decoding, CPU may also be used to decode video streams. The following table lists command lines with recommended pipelines for various combinations of media decode and AI inference devices.
Media Decode device |
Inference device |
Sample command line |
|---|---|---|
GPU |
|
gst-launch-1.0 filesrc location=${VIDEO_EXAMPLE} ! parsebin ! vah264dec ! “video/x-raw(memory:VAMemory)” ! gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va ! queue ! gvafpscounter ! fakesink |
GPU |
CPU |
gst-launch-1.0 filesrc location=${VIDEO_EXAMPLE} ! parsebin ! vah264dec ! “video/x-raw” ! gvadetect model=${MODEL_FILE} device=CPU pre-process-backend=opencv ! queue ! gvafpscounter ! fakesink |
CPU |
|
gst-launch-1.0 filesrc location=${VIDEO_EXAMPLE} ! parsebin ! avdec_h264 ! “video/x-raw” ! gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=opencv ! queue ! gvafpscounter ! fakesink |
CPU |
CPU |
gst-launch-1.0 filesrc location=${VIDEO_EXAMPLE} ! parsebin ! avdec_h264 ! “video/x-raw” ! gvadetect model=${MODEL_FILE} device=CPU pre-process-backend=opencv ! queue ! gvafpscounter ! fakesink |
GStreamer supports several memory types, but the most common formats found in DL Streamer pipelines are:
video/x-raw, which typically resolves to video/x-raw(memory:SystemMemory) — suitable for CPU processing.
video/x-raw(memory:VAMemory), which is optimized for GPU acceleration.
DL Streamer inference elements, such as gvadetect, gvaclassify, and gvainference,
can apply different preprocessing backends, including ie (Inference Engine), opencv, and
va-surface-sharing. You can set these explicitly, using the pre-process-backend option,
or allow DL Streamer to make the decision internally. If the pipeline is defined correctly,
GStreamer can negotiate the optimal memory type for a given device, allowing DL Streamer to
automatically set the optimal preprocessing backend.
For example:
The decodebin3 element recognizes the presence of a GPU in the system and attempts to
introduce the optimal VAMemory setting. This automatically results in using the efficient
va-surface-sharing backend in DL Streamer if the inference element device is set to GPU or
NPU.
However, if the pipeline is suboptimal (e.g., using decodebin instead of decodebin3),
DL Streamer will switch to a less efficient preprocessing backend (e.g., opencv for the GPU)
to ensure the pipeline functions. In such cases, you will get a warning and a suggestion for
correcting the pipeline.
Inference Device |
Memory Type |
Preprocessing Backend |
|---|---|---|
CPU |
only |
|
GPU / NPU |
use |
use |
2. Multi-stage pipeline with gvadetect and gvaclassify#
The rules outlined above can be combined to create multi-stage pipelines. For example, the first two inference stages can use GPU and NPU devices with the VA backend. The third element may use CPU device, after the video stream is copied from the device memory (VAMemory) to the system memory.
gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va ! queue ! \
vapostproc ! video/x-raw ! \
gvaclassify model=${MODEL_FILE_3} device=CPU pre-process-backend=opencv ! queue ! \
gvafpscounter ! fakesink
Static allocation of AI stages to inference devices may be suboptimal if
one model is much bigger than others. In such cases, it is recommended to
use virtual aggregated devices and let OpenVINO™ inference
engine to select devices dynamically. The pre-processing backend should
be selected to handle all possible combinations.
gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=MULTI:GPU,NPU,CPU pre-process-backend=va ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=MULTI:GPU,NPU,CPU pre-process-backend=va ! queue ! \
gvaclassify model=${MODEL_FILE_3} device=MULTI:GPU,NPU,CPU pre-process-backend=va ! queue ! \
gvafpscounter ! fakesink
3. Multi-stream pipelines with single AI stage#
The GStreamer framework can execute multiple input streams in parallel.
If streams use the same pipeline configuration, it is recommended to
create a shared inference element. The model-instance-id=inf0
parameter constructs such element. In addition, the batch-size
element should be set to the integer multiply of the stream count. This
approach batches images from different streams to maximize throughput
and at the same time to reduce latency penalty due to batching.
gst-launch-1.0 filesrc location=${VIDEO_FILE_1} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va model-instance-id=inf0 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_2} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va model-instance-id=inf0 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_3} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va model-instance-id=inf0 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_4} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va model-instance-id=inf0 batch-size=4 ! queue ! gvafpscounter ! fakesink
Similarly to multi-stage scenarios, an aggregated inference device
can be used with device=MULTI:GPU,NPU,CPU.
Note that a single Deep Learning Streamer command line with multiple input streams yields higher performance than running multiple DL Streamer command lines per each processing of a single single stream. The reason is multiple command lines cannot benefit from sharing one AI model instance and cross-stream batching.
4. Multi-stream pipelines with multiple AI stages#
The multi-stage and multi-stream scenarios can be combined to form
complex execution graphs. In the following example, four input streams
are processed by gvadetect and gvaclassify. Note that the pipeline creates
only two instances of inference models:
inf1with a detection model running on GPUinf2with a classification model running on NPU
gst-launch-1.0 filesrc location=${VIDEO_FILE_1} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va model-instance-id=inf1 batch-size=4 ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va model-instance-id=inf2 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_2} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va model-instance-id=inf1 batch-size=4 ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va model-instance-id=inf2 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_3} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va model-instance-id=inf1 batch-size=4 ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va model-instance-id=inf2 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_4} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va model-instance-id=inf1 batch-size=4 ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va model-instance-id=inf2 batch-size=4 ! queue ! gvafpscounter ! fakesink
5. Multi-stream pipelines with meta-aggregation element#
The multi-stage and multi-stream scenarios can use the gvametaaggregate element to aggregate the results from multiple branches of the pipeline. The aggregated results are published as a single JSON metadata output.
The following example shows how to use the gvametaaggregate element to
aggregate the results from two stream pipelines:
gst-launch-1.0 filesrc location=${VIDEO_FILE_1} ! decodebin3 ! videoconvert ! \
tee name=t t. ! queue ! gvametaaggregate name=a !
gvaclassify model=${MODEL_FILE_2} device=CPU ! queue ! \
gvametaconvert format=json add-tensor-data=true ! gvametapublish file-path=./result.json method=file file-format=json-lines ! \
fakesink sync=false t. ! queue ! \
gvadetect model=${MODEL_FILE_1} device=GPU ! a. \
filesrc location=${VIDEO_FILE_1} ! decodebin3 ! videoconvert ! \
gvadetect model=${MODEL_FILE_1} device=GPU ! a.
6. The Deep Learning Streamer Pipeline Framework performance benchmark results#
The Deep Learning Streamer Pipeline Framework example performance benchmark results can be found as a part of the Smart Cities Accelerated by Intel® Graphics Solutions paper.