Performance Guide#

1. Media and AI processing (single stream)#

The Deep Learning Streamer Pipeline Framework combines media processing and AI inference capabilities. The simplest pipeline detects objects in a video stream stored as a file.

For Intel platforms with integrated GPU and/or NPU devices, use the recommended command line:

gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va ! queue ! gvafpscounter ! fakesink
gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! gvadetect model=${MODEL_FILE} device=NPU pre-process-backend=va ! queue ! gvafpscounter ! fakesink
  • vah264dec uses the hardware video decoder to generate output images (VAMemory).

  • gvadetect consumes VAMemory images (zero-copy operation) and generates inference results.

  • pre-process-backend=va uses the hardware image scaler to resize the VAMemory image into input model tensor dimensions.

When using discrete GPUs, it is recommended to set pre-process-backend=va-surface-sharing to enforce zero-copy operation between video decoder and AI inference engine. Note that va-surface-sharing may be slightly slower than the va backend when integrated GPU is used.

The va-surface-sharing option compiles the image scaling layer into the AI model, consuming GPU compute resources:

gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va-surface-sharing ! queue ! gvafpscounter ! fakesink

While GPU is preferred for hardware-accelerated media decoding, CPU may also be used to decode video streams. The following table lists command lines with recommended pipelines for various combinations of media decode and AI inference devices.

Media Decode device

Inference device

Sample command line

GPU


GPU
or
NPU

gst-launch-1.0 filesrc location=${VIDEO_EXAMPLE} ! parsebin ! vah264dec ! “video/x-raw(memory:VAMemory)” ! gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va ! queue ! gvafpscounter ! fakesink

GPU

CPU

gst-launch-1.0 filesrc location=${VIDEO_EXAMPLE} ! parsebin ! vah264dec ! “video/x-raw” ! gvadetect model=${MODEL_FILE} device=CPU pre-process-backend=opencv ! queue ! gvafpscounter ! fakesink

CPU


GPU
or
NPU

gst-launch-1.0 filesrc location=${VIDEO_EXAMPLE} ! parsebin ! avdec_h264 ! “video/x-raw” ! gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=opencv ! queue ! gvafpscounter ! fakesink

CPU

CPU

gst-launch-1.0 filesrc location=${VIDEO_EXAMPLE} ! parsebin ! avdec_h264 ! “video/x-raw” ! gvadetect model=${MODEL_FILE} device=CPU pre-process-backend=opencv ! queue ! gvafpscounter ! fakesink

GStreamer supports several memory types, but the most common formats found in DL Streamer pipelines are:

  • video/x-raw, which typically resolves to video/x-raw(memory:SystemMemory) — suitable for CPU processing.

  • video/x-raw(memory:VAMemory), which is optimized for GPU acceleration.

DL Streamer inference elements, such as gvadetect, gvaclassify, and gvainference, can apply different preprocessing backends, including ie (Inference Engine), opencv, and va-surface-sharing. You can set these explicitly, using the pre-process-backend option, or allow DL Streamer to make the decision internally. If the pipeline is defined correctly, GStreamer can negotiate the optimal memory type for a given device, allowing DL Streamer to automatically set the optimal preprocessing backend.

For example:
The decodebin3 element recognizes the presence of a GPU in the system and attempts to introduce the optimal VAMemory setting. This automatically results in using the efficient va-surface-sharing backend in DL Streamer if the inference element device is set to GPU or NPU.

However, if the pipeline is suboptimal (e.g., using decodebin instead of decodebin3), DL Streamer will switch to a less efficient preprocessing backend (e.g., opencv for the GPU) to ensure the pipeline functions. In such cases, you will get a warning and a suggestion for correcting the pipeline.

Inference Device

Memory Type

Preprocessing Backend

CPU

only video/x-raw available

ie or opencv

GPU / NPU

use video/x-raw(memory:VAMemory) for optimal performance

use va-surface-sharing to avoid memory copying

2. Multi-stage pipeline with gvadetect and gvaclassify#

The rules outlined above can be combined to create multi-stage pipelines. For example, the first two inference stages can use GPU and NPU devices with the VA backend. The third element may use CPU device, after the video stream is copied from the device memory (VAMemory) to the system memory.

gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va ! queue ! \
vapostproc ! video/x-raw ! \
gvaclassify model=${MODEL_FILE_3} device=CPU pre-process-backend=opencv ! queue ! \
gvafpscounter ! fakesink

Static allocation of AI stages to inference devices may be suboptimal if one model is much bigger than others. In such cases, it is recommended to use virtual aggregated devices and let OpenVINO™ inference engine to select devices dynamically. The pre-processing backend should be selected to handle all possible combinations.

gst-launch-1.0 filesrc location=${VIDEO_FILE} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=MULTI:GPU,NPU,CPU pre-process-backend=va ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=MULTI:GPU,NPU,CPU pre-process-backend=va ! queue ! \
gvaclassify model=${MODEL_FILE_3} device=MULTI:GPU,NPU,CPU pre-process-backend=va ! queue ! \
gvafpscounter ! fakesink

3. Multi-stream pipelines with single AI stage#

The GStreamer framework can execute multiple input streams in parallel. If streams use the same pipeline configuration, it is recommended to create a shared inference element. The model-instance-id=inf0 parameter constructs such element. In addition, the batch-size element should be set to the integer multiply of the stream count. This approach batches images from different streams to maximize throughput and at the same time to reduce latency penalty due to batching.

gst-launch-1.0 filesrc location=${VIDEO_FILE_1} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va model-instance-id=inf0 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_2} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va model-instance-id=inf0 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_3} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va model-instance-id=inf0 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_4} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE} device=GPU pre-process-backend=va model-instance-id=inf0 batch-size=4 ! queue ! gvafpscounter ! fakesink

Similarly to multi-stage scenarios, an aggregated inference device can be used with device=MULTI:GPU,NPU,CPU.

Note that a single Deep Learning Streamer command line with multiple input streams yields higher performance than running multiple DL Streamer command lines per each processing of a single single stream. The reason is multiple command lines cannot benefit from sharing one AI model instance and cross-stream batching.

4. Multi-stream pipelines with multiple AI stages#

The multi-stage and multi-stream scenarios can be combined to form complex execution graphs. In the following example, four input streams are processed by gvadetect and gvaclassify. Note that the pipeline creates only two instances of inference models:

  • inf1 with a detection model running on GPU

  • inf2 with a classification model running on NPU

gst-launch-1.0 filesrc location=${VIDEO_FILE_1} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va model-instance-id=inf1 batch-size=4 ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va model-instance-id=inf2 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_2} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va model-instance-id=inf1 batch-size=4 ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va model-instance-id=inf2 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_3} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va model-instance-id=inf1 batch-size=4 ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va model-instance-id=inf2 batch-size=4 ! queue ! gvafpscounter ! fakesink \
filesrc location=${VIDEO_FILE_4} ! parsebin ! vah264dec ! "video/x-raw(memory:VAMemory)" ! \
gvadetect model=${MODEL_FILE_1} device=GPU pre-process-backend=va model-instance-id=inf1 batch-size=4 ! queue ! \
gvaclassify model=${MODEL_FILE_2} device=NPU pre-process-backend=va model-instance-id=inf2 batch-size=4 ! queue ! gvafpscounter ! fakesink

5. Multi-stream pipelines with meta-aggregation element#

The multi-stage and multi-stream scenarios can use the gvametaaggregate element to aggregate the results from multiple branches of the pipeline. The aggregated results are published as a single JSON metadata output.

The following example shows how to use the gvametaaggregate element to aggregate the results from two stream pipelines:

gst-launch-1.0 filesrc location=${VIDEO_FILE_1} ! decodebin3 ! videoconvert ! \
  tee name=t t. ! queue ! gvametaaggregate name=a !
  gvaclassify model=${MODEL_FILE_2} device=CPU ! queue ! \
  gvametaconvert format=json add-tensor-data=true ! gvametapublish file-path=./result.json method=file file-format=json-lines ! \
  fakesink sync=false t. ! queue ! \
  gvadetect model=${MODEL_FILE_1} device=GPU ! a. \
  filesrc location=${VIDEO_FILE_1} ! decodebin3 ! videoconvert ! \
  gvadetect model=${MODEL_FILE_1} device=GPU ! a.

6. The Deep Learning Streamer Pipeline Framework performance benchmark results#

The Deep Learning Streamer Pipeline Framework example performance benchmark results can be found as a part of the Smart Cities Accelerated by Intel® Graphics Solutions paper.