LLM Robotics Demo#

We have built a code generation pipeline for robotics, interacting with a chat bot utilizing AI technologies such as large language models (Phi-4) and computer vision (SAM, CLIP). It will use the user’s voice or enter a text commands to provide a prompt to the robotics agent to generate corresponding actions.

This tutorial will provide a step-by-step guide to set up a real-time system to control a JAKA robot arm with movement commands generated using an LLM. The picture below shows the architecture of the demo:

../../_images/llm-robotics-demo-arch.png

Prerequisites#

Please make sure you have finished setup steps in Installation & Setup and also ensure you have the following list-table prerequisites:

Specification

Recommended

Processor

Intel® Core™ Ultra 7 Processor 265H

Storage

256G

Memory

LPDDR5, 6400 MHz, 16G x 2

JAKA robot arm setup#

This section will provide a step-by-step guide to setup a simulation JAKA robot-arm ROS2 application.

Install PLCopen library#

  1. Install dependency:

    $ sudo apt install libeigen3-dev python3-pip python3-venv cmake
    $ sudo python3 -m pip install pymodbus==v3.6.9
    
  2. Install PLCopen library:

    $ sudo apt install libshmringbuf libshmringbuf-dev plcopen-ruckig plcopen-ruckig-dev plcopen-motion plcopen-motion-dev plcopen-servo plcopen-servo-dev plcopen-databus plcopen-databus-dev
    

Install ROS2 Iron#

  1. Install dependency:

    $ sudo apt update && sudo apt install -y locales curl gnupg2 lsb-release
    
  2. Setup the Intel® oneAPI APT repository:

    $ sudo -E wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | sudo tee /usr/share/keyrings/oneapi-archive-keyring.gpg > /dev/null
    $ echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https://apt.repos.intel.com/oneapi all main" | sudo tee /etc/apt/sources.list.d/oneAPI.list
    $ sudo apt update
    
  3. Setup the public ROS2 Iron APT repository:

    $ sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key  -o /usr/share/keyrings/ros-archive-keyring.gpg
    $ echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo $UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null
    $ sudo bash -c 'echo -e "Package: *\nPin: origin eci.intel.com\nPin-Priority: -1" > /etc/apt/preferences.d/isar'
    $ sudo apt update
    
  4. Install ROS2 Iron packages:

    $ sudo apt install -y python3-colcon-common-extensions python3-argcomplete python3-pykdl
    $ sudo apt install -y ros-iron-desktop ros-iron-moveit* ros-iron-osqp-vendor ros-iron-ament-cmake-google-benchmark librange-v3-dev ros-iron-ros-testing
    $ sudo bash -c 'echo -e "Package: *\nPin: origin eci.intel.com\nPin-Priority: 1000" > /etc/apt/preferences.d/isar'
    

Install JAKA robot arm application#

  1. Download the source code of JAKA robot arm:

    $ cd ~/Downloads/
    $ sudo apt source ros-humble-pykdl-utils ros-humble-jaka-bringup ros-humble-jaka-description ros-humble-jaka-hardware ros-humble-jaka-moveit-config ros-humble-jaka-moveit-py ros-humble-jaka-servo ros-humble-run-jaka-moveit ros-humble-run-jaka-plc
    
  2. Create workspace for robot arm source code:

    $ mkdir -p ~/ws_jaka/src
    $ cp -r ~/Downloads/ros-humble-jaka-bringup-3.2.0/robot_arm/ ~/ws_jaka/src
    
  3. Build JAKA robot arm source code:

    $ cd ~/ws_jaka/ && source /opt/ros/iron/setup.bash
    $ touch src/robot_arm/jaka/jaka_servo/COLCON_IGNORE
    $ colcon build
    

FunASR setup#

This section will provide a step-by-step guide to setup a FunASR (A Fundamental End-to-End Speech Recognition Toolkit) server.

Install dependency#

$ sudo apt-get install cmake libopenblas-dev libssl-dev portaudio19-dev ffmpeg git python3-pip -y

Add OpenVINO speech model to FunASR#

  1. Install FunASR environment:

    $ sudo apt install funasr llm-robotics
    $ cd /opt/funasr/
    $ sudo bash install_funasr.sh
    
  2. Install the asr-openvino model script:

    $ sudo chown -R $USER /opt/funasr/
    $ sudo chown -R $USER /opt/llm-robotics/
    $ mkdir /opt/funasr/FunASR/funasr/models/intel/
    $ cp -r /opt/llm-robotics/asr-openvino-demo/models/* /opt/funasr/FunASR/funasr/models/intel/
    
  3. Create a virtual FunASR Python environment:

    $ cd /opt/funasr/
    $ python3 -m venv venv-asr
    $ source venv-asr/bin/activate
    $ pip install modelscope==1.17.1 onnx==1.16.2 humanfriendly==10.0 pyaudio websocket==0.2.1 websockets==12.0 translate==3.6.1 kaldi_native_fbank==1.20.0 onnxruntime==1.18.1 torchaudio==2.4.0 openvino==2024.3.0
    
  4. Build asr-openvino model:

    $ cd /opt/funasr/FunASR/
    $ pip install -e ./
    $ python ov_convert_FunASR.py
    $ cp -r ~/.cache/modelscope/hub/iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch /opt/llm-robotics/asr-openvino-demo/
    
  5. Quantitative model using ovc:

    $ cd /opt/llm-robotics/asr-openvino-demo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/
    $ ovc model.onnx --output_model=model_bb_fp16
    $ ovc model_eb.onnx --output_model=model_eb_fp16
    
  6. Modify the configuration.json file of the speech model:

    # modify model_name_in_hub.ms & file_path_metas.init_param
    {
      "framework": "pytorch",
      "task" : "auto-speech-recognition",
      "model": {"type" : "funasr"},
      "pipeline": {"type":"funasr-pipeline"},
      "model_name_in_hub": {
        "ms":"",
        "hf":""},
      "file_path_metas": {
        "init_param":"model_bb_fp16.xml",
        "config":"config.yaml",
        "tokenizer_conf": {"token_list": "tokens.json", "seg_dict_file": "seg_dict"},
        "frontend_conf":{"cmvn_file": "am.mvn"}}
    }
    
  7. Reinstall the funasr model of FunASR:

    $ cd /opt/funasr/FunASR/
    $ pip uninstall funasr
    $ pip install -e ./
    

LLM and vision models setup#

This section will provide a step-by-step guide to setup a virtual Python environment to run LLM demo.

Setup a virtual environment for application#

  1. Install the pip packages for LLM:

    $ cd /opt/llm-robotics/LLM/
    $ python3 -m venv venv-llm
    $ source venv-llm/bin/activate
    $ pip install -r requirement.txt
    
  2. Set the environment variable:

    $ # If you have connection issue on HuggingFace in PRC, please set-up the networking environment by following commands:
    $ export HF_ENDPOINT="https://hf-mirror.com"
    $ # transformers offline: export TRANSFORMERS_OFFLINE=1
    

Setup the SAM model#

Follow the OpenVINO documentation below to export and save SAM model:

Modify the loading PATH of models to the exported model path, the default path is:

# /opt/llm-robotics/LLM/utils/mobilesam_helper.py:L88-L89
ov_sam_encoder_path = f"/home/intel/ov_models/sam_image_encoder.xml"
ov_sam_predictor_path = f"/home/intel/ov_models/sam_mask_predictor.xml"

Setup the CLIP model#

Follow the OpenVINO documentation below to export and save CLIP (ViT-B) model:

Modify the loading PATH of models to the exported model path, the default path is:

# /opt/llm-robotics/LLM/utils/mobilesam_helper.py:L87
clip_model_path = f"/home/intel/ov_models/clip-vit-base-patch16.xml"

Setup the Phi-4-mini-instruct-int8-ov model#

Follow the below commands to download Phi-4-mini-instruct-int8-ov models:

$ sudo apt install git-lfs
$ mkdir ~/ov_models && cd ~/ov_models
$ GIT_LFS_SKIP_SMUDGE=1 git clone https://hf-mirror.com/OpenVINO/Phi-4-mini-instruct-int8-ov
$ git lfs pull

Set the environment variable:

Modify the loading PATH of models to the exported model path, the default path is:

# /opt/llm-robotics/LLM/llm_bridge.py:L27
self.model_path = "/home/intel/ov_models/Phi-4-mini-instruct-int8-ov"

Run pipeline#

This section will provide a step-by-step guide to launch LLM robotics demo.

Prepare System#

Please connect the following items to the Intel® Core™ Ultra IPC.

Item

Explanation

LINK

Camera

Intel® RealSense™ Depth Camera D435

https://www.intelrealsense.com/depth-camera-d435/

USB Mic

Audio input device of FunASR, 16k sampling rate

UGREEN CM564

Launch LLM Robotic Demo#

The LLM Robotic demo includes the real-time component, non-real-time ROS2 component, and non-real-time LLM component.

Important

Please ensure a stable network connection before running the demo. The FunASR and LLM applications require an active network connection.

  1. Launch the OpenVINO FunASR server:

    $ source /opt/funasr/venv-asr/bin/activate
    $ python3 /opt/funasr/FunASR/runtime/python/websocket/funasr_wss_server.py --port 10095 --certfile "" --keyfile "" --asr_model /opt/llm-robotics/asr-openvino-demo/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/
    
  2. Launch the real-time application:

    $ # affinity real time application to core 3
    $ sudo taskset -c 3 plc_rt_pos_rtmotion
    

    If the real-time application launches successfully, the terminal will show the following:

    Axis 0 initialized.
    Axis 1 initialized.
    Axis 2 initialized.
    Axis 3 initialized.
    Axis 4 initialized.
    Axis 5 initialized.
    Function blocks initialized.
    
  3. Launch the JAKA robot arm ROS2 node:

    Important

    Execute the following commands as privileged user (root).

    $ source ~/ws_jaka/install/setup.bash
    $ ros2 launch jaka_moveit_py jaka_motion_planning.launch.py
    
    If the ROS2 node launches successfully, RVIZ2 will display the following:
    ../../_images/jaka-robot-arm.png
  4. Launch the LLM application:

    $ source /opt/intel/oneapi/setvars.sh
    $ cd /opt/llm-robotics/LLM/
    $ source venv-llm/bin/activate
    $ python main.py
    

    If the LLM application launches successfully, the demo UI will display the following:

    • Camera Stream & Depth Stream: displays the real-time color and depth streams from the camera.

    • App status: indicates the status and outcome of code generation.

    • Inference Result: presents the results from the SAM and CLIP models.

    • Text prompt: enter prompts in English via keyboard or in Chinese using the microphone. Press the “Submit” button to start the inference process.

    Attach a demo picture with the prompt (Please pick up the black computer mouse and place it in the target position) as shown below: