Configure Alerts in Time Series Analytics Microservice#
This section provides instructions for setting up alerts in Time Series Analytics Microservice.
Docker Compose Deployment#
Docker - Publish MQTT Alerts#
Configure MQTT Alerts#
The following MQTT alerts are configured for both Wind Turbine Anomaly Detection
and Weld Anomaly Detection sample apps
wind-turbine-anomaly-detection/time-series-analytics-config/config.json
"alerts": {
"mqtt": {
"mqtt_broker_host": "ia-mqtt-broker",
"mqtt_broker_port": 1883,
"name": "my_mqtt_broker"
}
}
weld-anomaly-detection/time-series-analytics-config/config.json
"alerts": {
"mqtt": {
"mqtt_broker_host": "ia-mqtt-broker",
"mqtt_broker_port": 1883,
"name": "my_mqtt_broker"
}
}
Configure MQTT Alert in TICK Script#
The following code snippets show how to add the MQTT, if not
already added, to Wind Turbine Anomaly Detection and Weld Anomaly Detection
sample apps. The TICK script has the following configuration done by default.
data0
|alert()
.crit(lambda: "anomaly_status" > 0)
.message('Anomaly detected for wind speed: {{ index .Fields "wind_speed" }} Grid Active Power: {{ index .Fields "grid_active_power" }} Anomaly Status: {{ index .Fields "anomaly_status" }} ')
.noRecoveries()
.mqtt('my_mqtt_broker')
.topic('alerts/wind_turbine')
.qos(1)
weld-anomaly-detection/time-series-analytics-config/tick_scripts/weld_anomaly_detector.tick
data0
|alert()
.crit(lambda: "anomaly_status" > 0)
.message('{"time": "{{ index .Time }}", "Pressure": {{ index .Fields "Pressure" }}, "CO2 Weld Flow": {{ index .Fields "CO2 Weld Flow" }}, "anomaly_status": {{ index .Fields "anomaly_status" }} } ')
.noRecoveries()
.mqtt('my_mqtt_broker')
.topic('alerts/weld_defects')
.qos(1)
Note: Setting QoS to
1ensures messages are delivered at least once. Alerts are preserved and resent if the MQTT broker reconnects after downtime.
Docker - Subscribe to MQTT Alerts#
Follow the steps to subscribe to the published MQTT alerts.
To subscribe to all MQTT topics, execute the following command:
docker exec -ti ia-mqtt-broker mosquitto_sub -h localhost -v -t '#' -p 1883
To subscribe to a specific MQTT topic, such as
alerts/wind_turbine, use the following command. Note that the topic information can be found in the TICK Script.docker exec -ti ia-mqtt-broker mosquitto_sub -h localhost -v -t alerts/wind_turbine -p 1883
weld-anomaly-detection/time-series-analytics-config/tick_scripts/weld_anomaly_detector.tick
docker exec -ti ia-mqtt-broker mosquitto_sub -h localhost -v -t alerts/weld_defects -p 1883
Docker - Publish OPC-UA Alerts#
Note: This section is applicable to Wind Turbine Anomaly Dectection sample app only. In other words, OPC UA alerts are not supported for Weld Anomaly Detection sample app.
Prerequisite#
Ensure that make up_opcua_ingestion has been executed by following the steps
in the getting started guide for the docker compose deployment
To enable OPC-UA alerts in Time Series Analytics Microservice, use the following steps.
Configuration#
1. Configure OPC-UA Alert in TICK Script#
The following code snippets show how to add the OPC-UA alert, if not already added, replace this in place of MQTT alert section in the TICK script.
data0
|alert()
.crit(lambda: "anomaly_status" > 0)
.message('Anomaly detected: Wind Speed: {{ index .Fields "wind_speed" }}, Grid Active Power: {{ index .Fields "grid_active_power" }}, Anomaly Status: {{ index .Fields "anomaly_status" }}')
.noRecoveries()
.post('http://localhost:5000/opcua_alerts')
.timeout(30s)
weld-anomaly-detection/time-series-analytics-config/tick_scripts/weld_anomaly_detector.tick
data0
|alert()
.crit(lambda: "anomaly_status" > 0)
.message('{"time": "{{ index .Time }}", "Pressure": {{ index .Fields "Pressure" }}, "CO2 Weld Flow": {{ index .Fields "CO2 Weld Flow" }}, "anomaly_status": {{ index .Fields "anomaly_status" }} } ')
.noRecoveries()
.mqtt('my_mqtt_broker')
.topic('alerts/weld_defects')
.qos(1)
Note:
The
noRecoveries()method suppresses recovery alerts, ensuring only critical alerts are sent.If doing a Helm-based deployment on a Kubernetes cluster, after making changes to the tick script, copy the UDF deployment package using step.
2. Configuring OPC-UA Alert in config.json#
Make the following REST API call to the Time Series Analytics microservice. Note that the mqtt alerts key is replaced with the opcua key and its specific details:
wind-turbine-anomaly-detection/time-series-analytics-config/config.json
curl -k -X 'POST' \
'https://<HOST_IP>:3000/ts-api/config' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"udfs": {
"name": "windturbine_anomaly_detector",
"models": "windturbine_anomaly_detector.pkl",
"device": "cpu"
},
"alerts": {
"opcua": {
"opcua_server": "opc.tcp://ia-opcua-server:4840/freeopcua/server/",
"namespace": 1,
"node_id": 2004
}
}
}'
weld-anomaly-detection/time-series-analytics-config/config.json
curl -k -X 'POST' \
'https://<HOST_IP>:3000/ts-api/config' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"udfs": {
"name": "weld_anomaly_detector",
"models": "weld_anomaly_detector.cb"
},
"alerts": {
"mqtt": {
"mqtt_broker_host": "ia-mqtt-broker",
"mqtt_broker_port": 1883,
"name": "my_mqtt_broker"
}
}
}'
Docker - Subscribe to OPC UA Alerts using Sample OPCUA Subscriber#
Install python packages
asyncioandasyncuato run the sample OPC UA subscriberpip install asyncio asyncua
Run the following sample OPC UA subscriber by updating the
<IP-Address of OPCUA Server>to read the alerts published to server on tagns=1;i=2004from Time Series Analytics Microservice.import asyncio from asyncua import Client, Node class SubscriptionHandler: def datachange_notification(self, node: Node, val, data): print(val) async def main(): client = Client(url="opc.tcp://<IP-Address of OPCUA Server>:30003/freeopcua/server/") async with client: handler = SubscriptionHandler() subscription = await client.create_subscription(50, handler) myvarnode = client.get_node("ns=1;i=2004") await subscription.subscribe_data_change(myvarnode) await asyncio.sleep(100) await subscription.delete() await asyncio.sleep(1) if __name__ == "__main__": asyncio.run(main())
Helm Deployment#
Helm - Publish MQTT Alerts#
For detailed instructions on configuring and publishing MQTT alerts, refer to the Publish MQTT Alerts section.
Helm - Subscribe to MQTT Alerts#
Follow the steps to subscribe to the published MQTT alerts.
To subscribe to MQTT topics in a Helm deployment, execute the following command:
Identify the MQTT broker pod name by running:
kubectl get pods -n ts-sample-app | grep mqtt-broker
Use the pod name from the output of the above command to subscribe to all topics:
kubectl exec -it -n ts-sample-app <mqtt_broker_pod_name> -- mosquitto_sub -h localhost -v -t '#' -p 1883
To subscribe to MQTT topic such as
alerts/wind_turbine, use the following command:kubectl exec -it -n ts-sample-app <mqtt_broker_pod_name> -- mosquitto_sub -h localhost -v -t alerts/wind_turbine -p 1883
kubectl exec -it -n ts-sample-app <mqtt_broker_pod_name> -- mosquitto_sub -h localhost -v -t alerts/weld_defects -p 1883
Helm - Publish OPC-UA Alerts#
Note:
Ensure a sample app is deployed by following the installation step for OPC-UA ingestion.
To enable OPC-UA alerts in Time Series Analytics Microservice, please follow below steps.
Configuration#
Configuring OPC-UA Alert in TICK Script
Configure the tick script by following these instructions.
Copying the TICK script
Copy the TICK script using the following commands:
cd edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series/apps/wind-turbine-anomaly-detection # path relative to git clone folder cd time-series-analytics-config export SAMPLE_APP="wind-turbine-anomaly-detection" mkdir -p $SAMPLE_APP cp -r models tick_scripts udfs $SAMPLE_APP/. POD_NAME=$(kubectl get pods -n ts-sample-app -o jsonpath='{.items[*].metadata.name}' | tr ' ' '\n' | grep deployment-time-series-analytics-microservice | head -n 1) kubectl cp $SAMPLE_APP $POD_NAME:/tmp/ -n ts-sample-app
cd edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series/apps/weld-anomaly-detection # path relative to git clone folder cd time-series-analytics-config export SAMPLE_APP="weld-anomaly-detection" mkdir -p $SAMPLE_APP cp -r models tick_scripts udfs $SAMPLE_APP/. POD_NAME=$(kubectl get pods -n ts-sample-app -o jsonpath='{.items[*].metadata.name}' | tr ' ' '\n' | grep deployment-time-series-analytics-microservice | head -n 1) kubectl cp $SAMPLE_APP $POD_NAME:/tmp/ -n ts-sample-app
Configuring OPC-UA Alert in config.json
Make the following REST API call to the Time Series Analytics microservice. Note that the
mqttalerts key is replaced with theopcuakey and its specific details:wind-turbine-anomaly-detection/time-series-analytics-config/config.json
curl -k -X 'POST' \ 'https://<HOST_IP>:30001/ts-api/config' \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "udfs": { "name": "windturbine_anomaly_detector", "models": "windturbine_anomaly_detector.pkl", "device": "cpu" }, "alerts": { "opcua": { "opcua_server": "opc.tcp://ia-opcua-server:4840/freeopcua/server/", "namespace": 1, "node_id": 2004 } } }'
weld-anomaly-detection/time-series-analytics-config/config.json
curl -k -X 'POST' \ 'https://<HOST_IP>:30001/ts-api/config' \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '{ "udfs": { "name": "weld_anomaly_detector", "models": "weld_anomaly_detector.pkl", "device": "cpu" }, "alerts": { "opcua": { "opcua_server": "opc.tcp://ia-opcua-server:4840/freeopcua/server/", "namespace": 1, "node_id": 2004 } } }'
Helm - Subscribe to OPC UA Alerts using Sample OPCUA Subscriber#
To subscribe to OPC-UA alerts, follow these steps.