Skip to main content
Ctrl+K

Open Edge Platform

  • Loitering Detection
  • Loitering Detection
  • Loitering Detection
    • Overview
      • Key features
      • How it works
        • Components
      • Learn More
    • System Requirements
      • Supported Platforms
      • Minimum Requirements
      • Software Requirements
      • Compatibility notes
      • Validation
    • Get Started
      • Prerequisites
      • Set up and first use
      • Run the application
      • Access the Application and Components
        • Grafana UI
        • NodeRED UI
        • DL Streamer Pipeline Server
      • Stop the Application:
      • Other Deployment Option
      • Next Steps
      • Troubleshooting
      • Supporting Resources
    • Release Notes
      • Version 1.2 - March 28th, 2025
        • High-Level Features
    • Customize Application
      • Overall System Architecture
      • DL Streamer Pipeline Server
        • Overview of Deep Learning Streamer Pipeline Server
        • Key DL Streamer Pipeline Server Components
          • Logging and general configuration
          • Video processing pipelines
            • Object detection pipelines (YOLOv10 Series)
            • Object tracking pipelines
          • Configurable parameters
          • Messaging Interface (MQTT)
        • DL Streamer Pipeline Server workflow
      • Node-RED Flow for Data Processing
        • Overview of the Node-RED flow
        • Key Node-RED components
          • MQTT Input nodes
          • Data extraction nodes
          • Euclidean and IoR Nodes (Loitering Detection)
          • Data Table Output Nodes
          • MQTT Output Nodes
        • Node-RED workflow
      • Grafana visualization
        • Overview of Grafana tool
        • Key Grafana Components
          • Data Sources
          • Dashboards and Panels
        • Setting up Grafana
          • Install and launch Grafana
          • Add Your data source
          • Create your dashboard
        • Grafana use cases for object tracking and Loitering Detection
      • End-to-End integration
      • Conclusion
    • How to Deploy with Helm
      • Get Started
      • Prerequisites
      • Step 1: Download the Helm chart
      • Step 2: Configure and update the environment variables
      • Step 3: Deploy the application and Run multiple AI pipelines
      • Step 4: End the demonstration
      • Summary
      • Troubleshooting
        • Deploying with Intel GPU K8S Extension on Intel® Tiber™ Edge Platform
        • Deploying without Intel GPU K8S Extension
        • Error Logs
    • GitHub
    • Get Help
      • Troubleshooting Steps
      • Support

This Page

  • Show Source
©2025 Intel Corporation
Your Privacy Choices Notice at Collection