Deploy with Helm#
This guide provides step-by-step instructions for deploying the Industrial Edge Insights - Time Series sample application using Helm.
Prerequisites#
K8s installation on single or multi node must be done as prerequisite to continue the following deployment. Note: The Kubernetes cluster is set up with
kubeadm,kubectlandkubeletpackages on single and multi nodes withv1.30.2. Refer to tutorials such as https://adamtheautomator.com/installing-kubernetes-on-ubuntu and many other online tutorials to setup kubernetes cluster on the web with host OS as Ubuntu 22.04.For Helm installation, refer to helm website
Note If Ubuntu Desktop is not installed on the target system, follow the instructions from Ubuntu to install Ubuntu desktop. The target system refers to the system where you are installing the application.
Step 1: Generate or download the Helm charts#
You can either generate or download the Helm charts.
Wind Turbine Anomaly Detection Sample App
To download the Helm charts:
Follow this procedure on the target system to install the package.
Download Helm chart with the following command:
helm pull oci://registry-1.docker.io/intel/wind-turbine-anomaly-detection-sample-app --version 1.1.0-weeklyUnzip the package using the following command:
tar -xvzf wind-turbine-anomaly-detection-sample-app-1.1.0-weekly.tgz
Get into the Helm directory:
cd wind-turbine-anomaly-detection-sample-app
To generate the Helm charts:
cd edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series # path relative to git clone folder make gen_helm_charts app=wind-turbine-anomaly-detection cd helm/
Weld Anomaly Detection Sample App
To download the Helm charts:
Follow this procedure on the target system to install the package.
Download Helm chart with the following command:
helm pull oci://registry-1.docker.io/intel/weld-anomaly-detection-sample-app --version 1.0.0-weeklyUnzip the package using the following command:
tar -xvzf weld-anomaly-detection-sample-app-1.0.0-weekly.tgz
Get into the Helm directory:
cd weld-anomaly-detection-sample-app
To generate the Helm charts:
cd edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series # path relative to git clone folder make gen_helm_charts app=weld-anomaly-detection version=1.0.0-weekly cd helm/
Step 2: Configure and update the environment variables#
Update the following fields in
values.yamlfile of the helm chartINFLUXDB_USERNAME: INFLUXDB_PASSWORD: VISUALIZER_GRAFANA_USER: VISUALIZER_GRAFANA_PASSWORD: POSTGRES_PASSWORD: MINIO_ACCESS_KEY: MINIO_SECRET_KEY: HTTP_PROXY: # example: http_proxy: http://proxy.example.com:891 HTTPS_PROXY: # example: http_proxy: http://proxy.example.com:891
Step 3: Install Helm charts#
Note:
Uninstall the Helm charts if already installed.
Note the
helm installcommand fails if the above required fields are not populated as per the rules called out invalues.yamlfile.
Wind Turbine Anomaly Detection
To install Helm charts, use one of the following options:
OPC-UA ingestion flow:
helm install ts-wind-turbine-anomaly --set env.TELEGRAF_INPUT_PLUGIN=opcua . -n ts-sample-app --create-namespace
MQTT ingestion flow:
helm install ts-wind-turbine-anomaly --set env.TELEGRAF_INPUT_PLUGIN=mqtt_consumer . -n ts-sample-app --create-namespace
Note: To deploy with GPU support for inferencing, use the following command:
helm install ts-wind-turbine-anomaly \ --set privileged_access_required=true \ --set env.TELEGRAF_INPUT_PLUGIN=<input_plugin> \ . -n ts-sample-app --create-namespaceThe
privileged_access_required=truesetting enables Time Series Analytics Microservice access to GPU device through/dev/dri.
Weld Anomaly Detection
helm install ts-weld-anomaly . -n ts-sample-app --create-namespace
Verify Installation: Use the following command to verify if all the application resources got installed w/ their status:
kubectl get all -n ts-sample-app
Step 4: Copy the udf package for helm deployment to Time Series Analytics Microservice#
Wind Turbine Anomaly Detection
To copy your own or existing model into Time Series Analytics Microservice in order to run this sample application in Kubernetes environment:
The following udf package is placed in the repository under
edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series/apps/wind-turbine-anomaly-detection/time-series-analytics-config.- time-series-analytics-config/ - models/ - windturbine_anomaly_detector.pkl - tick_scripts/ - windturbine_anomaly_detector.tick - udfs/ - requirements.txt - windturbine_anomaly_detector.py
Copy your new UDF package (using the windturbine anomaly detection UDF package as an example) to the
time-series-analytics-microservicepod:export SAMPLE_APP="wind-turbine-anomaly-detection" cd edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series/apps/wind-turbine-anomaly-detection/time-series-analytics-config # path relative to git clone folder mkdir -p $SAMPLE_APP cp -r models tick_scripts udfs $SAMPLE_APP/. POD_NAME=$(kubectl get pods -n ts-sample-app -o jsonpath='{.items[*].metadata.name}' | tr ' ' '\n' | grep deployment-time-series-analytics-microservice | head -n 1) kubectl cp $SAMPLE_APP $POD_NAME:/tmp/ -n ts-sample-app
Weld Anomaly Detection
To copy your own or existing model into Time Series Analytics Microservice in order to run this sample application in Kubernetes environment:
The following udf package is placed in the repository under
edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series/apps/weld-anomaly-detection/time-series-analytics-config.- time-series-analytics-config/ - models/ - weld_anomaly_detector.cb - tick_scripts/ - weld_anomaly_detector.tick - udfs/ - requirements.txt - weld_anomaly_detector.py
Copy your new UDF package (using the windturbine anomaly detection UDF package as an example) to the
time-series-analytics-microservicepod:export SAMPLE_APP="weld-anomaly-detection" cd edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series/apps/weld-anomaly-detection/time-series-analytics-config # path relative to git clone folder mkdir -p $SAMPLE_APP cp -r models tick_scripts udfs $SAMPLE_APP/. POD_NAME=$(kubectl get pods -n ts-sample-app -o jsonpath='{.items[*].metadata.name}' | tr ' ' '\n' | grep deployment-time-series-analytics-microservice | head -n 1) kubectl cp $SAMPLE_APP $POD_NAME:/tmp/ -n ts-sample-app
Note: Run the commands only after performing the Helm install.
Step 5: Activate the New UDF Deployment Package#
NOTE: To activate the UDF inferencing on GPU, additionally run the following command as a prerequisite before activating the UDF deployment package:
curl -k -X 'POST' \ 'https://<HOST_IP>:30001/ts-api/config' \ -H 'accept: application/json' \ -H 'Content-Type: application/json' \ -d '<Add contents of edge-ai-suites/manufacturing-ai-suite/industrial-edge-insights-time-series/apps/wind-turbine-anomaly-detection/time-series-analytics-config/config.json with device value updated to gpu from cpu>'GPU Inferencing is supported only for
Wind Turbine Anomaly Detectionsample app
Run the following command to activate the UDF deployment package:
curl -k -X 'GET' \
'https://<HOST_IP>:30001/ts-api/config?restart=true' \
-H 'accept: application/json'
Step 6: Verify the Results#
Follow the verification steps in the Get Started guide:
Uninstall Helm Charts#
To uninstall Helm charts:
# Wind Turbine Anomaly Detection
helm uninstall ts-wind-turbine-anomaly -n ts-sample-app
kubectl get all -n ts-sample-app # It may take a few minutes for all application resources to be cleaned up.
# Weld Anomaly Detection
helm uninstall ts-weld-anomaly -n ts-sample-app
kubectl get all -n ts-sample-app # It may take a few minutes for all application resources to be cleaned up.
Configure Alerts in Time Series Analytics Microservice#
To configure alerts in Time Series Analytics Microservice, follow the steps here.
Deploy the Application with a Custom UDF#
To deploy the application with a custom UDF, follow the steps here.
Troubleshooting#
Check pod details or container logs to diagnose failures:
kubectl get pods -n ts-sample-app kubectl describe pod <pod_name> -n ts-sample-app # Shows details of the pod kubectl logs -f <pod_name> -n ts-sample-app # Shows logs of the container in the pod