How to run User Defined Function (UDF) pipelines#
Prerequisite#
Ensure to build/pull the DL Streamer Pipeline Server extended image.
Pull DL Streamer Pipeline Server extended image from dockerhub or ghcr
Ensure to update the
DLSTREAMER_PIPELINE_SERVER_IMAGE
value in[WORKDIR]/edge-ai-libraries/microservices/dlstreamer-pipeline-server/docker/.env
file accordingly, in order to run the pulled image.
Steps#
DL Streamer Pipeline Server supports udfloader element which allow user to write an User Defined Function (UDF) that can transform video frames and/or manipulate metadata. You can do this by adding an element called ‘udfloader’. You can try simple udfloader pipeline by replacing the following sections in [WORKDIR]/edge-ai-libraries/microservices/dlstreamer-pipeline-server/configs/default/config.json with the following
replace
"pipeline"
section with"pipeline": "{auto_source} name=source ! decodebin ! videoconvert ! video/x-raw,format=RGB ! udfloader name=udfloader ! videoconvert ! video/x-raw,format=NV12 ! appsink name=destination",
replace
"properties"
section with"properties": { "udfloader": { "element": { "name": "udfloader", "property": "config", "format": "json" }, "type": "object" } }
add
"udfs"
section in config (after"parameters"
)"udfs": { "udfloader": [ { "name": "python.geti_udf.geti_udf", "type": "python", "device": "CPU", "visualize": "true", "deployment": "./resources/models/geti/pallet_defect_detection/deployment", "metadata_converter": "null" } ] }
Save the config.json and restart DL Streamer Pipeline Server Ensure that the changes made to the config.json are reflected in the container by volume mounting (as mentioned in this document) it.
cd [WORKDIR]/edge-ai-libraries/microservices/dlstreamer-pipeline-server/docker/
docker compose down
docker compose up
Now to start this pipeline, run below Curl request
curl http://localhost:8080/pipelines/user_defined_pipelines/pallet_defect_detection -X POST -H 'Content-Type: application/json' -d '{
"source": {
"uri": "file:///home/pipeline-server/resources/videos/warehouse.avi",
"type": "uri"
},
"destination": {
"metadata": {
"type": "file",
"path": "/tmp/results.jsonl",
"format": "json-lines"
},
"frame": {
"type": "rtsp",
"path": "pallet_defect_detection",
"overlay": false
}
},
"parameters": {
"udfloader": {
"udfs": [
{
"name": "python.geti_udf.geti_udf",
"type": "python",
"device": "CPU",
"visualize": "true",
"deployment": "./resources/models/geti/pallet_defect_detection/deployment",
"metadata_converter": "null"
}
]
}
}
}'
Note
The "udfloader"
config needs to be present in either config.json or in the curl command. It is not needed at both places. However, if specified at both places then the config in curl command will override the config present in config.json
We should see the metadata results in /tmp/results.jsonl
For more details on UDF, you can refer this document