# Configuring Time Series Analytics Microservice ## Configuration Overview This document describes the configuration options available in `config.json` for the Time Series Analytics Microservice. ### Example Configuration ```json { "udfs": { "name": "windturbine_anomaly_detector", "models": "windturbine_anomaly_detector.pkl", "device": "cpu" }, "alerts": { "mqtt": { "mqtt_broker_host": "ia-mqtt-broker", "mqtt_broker_port": 1883, "name": "my_mqtt_broker" }, "opcua": { "opcua_server": "opc.tcp://ia-opcua-server:4840/freeopcua/server/", "namespace": 1, "node_id": 2004 } } } ``` > **Note:** The maximum allowed size for `config.json` is 5 KB. ## Configuration Details ### **UDFs Configuration** | Key | Mandatory | Description | Example Value | |----------|-----------|--------------------------------------------------------------------------------------------|----------------------------------------| | `name` | Yes | The name of the UDF script. | `"windturbine_anomaly_detector"` | | `models` | No | The name of the model file used by the UDF. | `"windturbine_anomaly_detector.pkl"` | | `device` | No | Specifies the hardware `cpu` or `gpu` for executing the UDF model inference. Default is `cpu` | `"cpu"` | Please refer to [Running inferencing on GPU](https://github.com/open-edge-platform/edge-ai-suites/blob/release-2025.2.0/manufacturing-ai-suite/industrial-edge-insights-time-series/docs/user-guide/get-started.md#running-user-defined-functionudf-inference-on-gpu) for usage of GPU in Time Series - Wind Turbine Anomaly Detection Sample App > **Note on GPU Support:** > - GPU inferencing for machine learning models is supported via the Intel scikit-learn extension (scikit-learn-intelex) > - Intel iGPU (Integrated Graphics Processing Unit) drivers are included within the Time Series Analytics Microservice to facilitate GPU usage. > - The scikit-learn-intelex package comes pre-installed, delivering optimized performance and GPU-enabled model inferencing for Intel hardware. > - Actual GPU utilization is determined by the model's compatibility with GPU execution and the available GPU hardware resources. ### **Alerts Configuration** (optional) #### **MQTT Configuration** (optional) | Key | Mandatory | Description | Example Value | |---------------------|-----------|-------------------------------------------------------------|------------------------| | `mqtt_broker_host` | Yes | The hostname or IP address of the MQTT broker. | `"ia-mqtt-broker"` | | `mqtt_broker_port` | Yes | The port number of the MQTT broker. | `1883` | | `name` | Yes | The name of the MQTT broker configuration. | `"my_mqtt_broker"` | For more information on how to configure MQTT alerts, refer to [Publishing MQTT Alerts](https://github.com/open-edge-platform/edge-ai-suites/blob/release-2025.2.0/manufacturing-ai-suite/industrial-edge-insights-time-series/docs/user-guide/how-to-guides/how-to-configure-alerts.md#docker---publish-mqtt-alerts) > **Note:** > > - MQTT Broker Availability: Ensure that the MQTT broker is accessible and available on the network before initializing this client. > - The broker must be reachable via the configured host and port. #### **OPC UA Configuration** (optional) | Key | Mandatory | Description | Example Value | |----------------|-----------|-------------------------------------------------------------|----------------------------------------------------| | `opcua_server` | Yes | The OPC UA server endpoint URL. | `"opc.tcp://ia-opcua-server:4840/freeopcua/server/"` | | `namespace` | Yes | The namespace index for the OPC UA node. | `1` | | `node_id` | Yes | The node ID where alerts will be published. | `2004` | For more information on how to configure OPC-UA alerts, refer to [Publishing OPC-UA Alerts](https://github.com/open-edge-platform/edge-ai-suites/blob/release-2025.2.0/manufacturing-ai-suite/industrial-edge-insights-time-series/docs/user-guide/how-to-guides/how-to-configure-alerts.md#docker---publish-opc-ua-alerts) > **Note:** > > - An OPC UA server must be available and running at the specified endpoint > for this code to function properly. > - Ensure the server is accessible and the connection parameters (endpoint URL, security settings, credentials) > are correctly configured before attempting to connect.