How to deploy with Helm* Chart#

This section shows how to deploy the Video Search and Summarization Sample Application using Helm chart.

Prerequisites#

Before you begin, ensure that you have the following:

  • Kubernetes* cluster set up and running.

  • The cluster must support dynamic provisioning of Persistent Volumes (PV). Refer to the Kubernetes Dynamic Provisioning Guide for more details.

  • Install kubectl on your system. See the Installation Guide. Ensure access to the Kubernetes cluster.

  • Helm chart installed on your system. See the Installation Guide.

  • Storage Requirement : Application requests for 50GiB of storage in its default configuration. (This should change with choice of models and needs to be properly configured). Please make sure that required storage is available in you cluster.

Helm Chart Installation#

In order to setup the end-to-end application, we need to acquire the charts and install it with optimal values and configurations. Subsequent sections will provide step by step details for the same.

1. Acquire the helm chart#

There are 2 options to get the charts in your workspace:

Option 1: Get the charts from Docker Hub#

Step 1: Pull the Specific Chart#

Use the following command to pull the Helm chart from Docker Hub:

helm pull oci://registry-1.docker.io/intel/video-search-and-summarization --version <version-no>

Refer to the release notes for details on the latest version number to use for the sample application.

Step 2: Extract the .tgz File#

After pulling the chart, extract the .tgz file:

tar -xvf video-search-and-summarization-<version-no>.tgz

This will create a directory named video-search-and-summarization containing the chart files. Navigate to the extracted directory to access the charts.

cd video-search-and-summarization

Option 2: Install from Source#

Step 1: Clone the Repository#

Clone the repository containing the Helm chart:

# Clone the latest on mainline
git clone https://github.com/open-edge-platform/edge-ai-libraries.git edge-ai-libraries
# Alternatively, Clone a specific release branch
git clone https://github.com/open-edge-platform/edge-ai-libraries.git edge-ai-libraries -b <release-tag>
Step 2: Change to the Chart Directory#

Navigate to the chart directory:

cd edge-ai-libraries/sample-applications/video-search-and-summarization/chart

2. Configure Required Values#

The application requires several values to be set by user in order to work. To make it easier, we have included a user_values_override.yaml file, which contains only the values that user needs to tweak. Open the file in your favorite editor or use nano:

nano user_values_override.yaml

Update or edit the values in YAML file as follows:

Key

Description

Example Value

global.sharedPvcName

Name for PVC to be used for storage by all components of application

vss-shared-pvc

global.keepPvc

PVC gets deleted by default once helm is uninstalled. Set this to true to persist PVC (helps avoid delay due to model re-downloads when re-installing chart).

true or false

global.huggingfaceToken

Your Hugging Face API token

<your-huggingface-token>

global.proxy.http_proxy

HTTP proxy if required

http://proxy-example.com:000

global.proxy.https_proxy

HTTPS proxy if required

http://proxy-example.com:000

global.vlmName

VLM model to be used by VLM Inference Microservice

Qwen/Qwen2.5-VL-7B-Instruct

global.llmName

LLM model to be used by OVMS (used only when OVMS is enabled)

Intel/neural-chat-7b-v3-3

global.env.POSTGRES_USER

PostgreSQL user

<your-postgres-user>

global.env.POSTGRES_PASSWORD

PostgreSQL password

<your-postgres-password>

global.env.MINIO_ROOT_USER

MinIO server user name

<your-minio-user> (at least 3 characters)

global.env.MINIO_ROOT_PASSWORD

MinIO server password

<your-minio-password> (at least 8 characters)

global.env.RABBITMQ_DEFAULT_USER

RabbitMQ username

<your-rabbitmq-username>

global.env.RABBITMQ_DEFAULT_PASS

RabbitMQ password

<your-rabbitmq-password>

global.env.OTLP_ENDPOINT

OTLP endpoint

Leave empty if not using telemetry

global.env.OTLP_ENDPOINT_TRACE

OTLP trace endpoint

Leave empty if not using telemetry

global.env.EMBEDDING_MODEL_NAME

Default embedding model used by all services when not overridden

CLIP/clip-vit-b-32 (search) or QwenText/qwen3-embedding-0.6b (summary+search)

global.env.TEXT_EMBEDDING_MODEL_NAME

Optional text-only embedding model. Required when global.embedding.preferTextModel is true.

QwenText/qwen3-embedding-0.6b

global.embedding.preferTextModel

When set to true, forces all services to use the text embedding model (for unified summary + search deployments).

true or false

global.gpu.vlminferenceEnabled

To enable vlm-inference on GPU

true or false

global.gpu.multimodalembeddingmsEnabled

To enable multimodal-embedding on GPU

true or false

global.gpu.ovmsEnabled

To enable OVMS on GPU

true or false

global.gpu.key

Label assigned to the GPU node on kubernetes cluster by the device plugin example- gpu.intel.com/i915, gpu.intel.com/xe. Identify by running kubectl describe node

Your cluster GPU node key

global.gpu.device

Set to GPU if need to deploy the inference workload on GPU device

GPU

videoingestion.odModelName

Name of object detection model used during video ingestion

yolov8l-worldv2

videoingestion.odModelType

Type/Category of the object detection Model

yolo_v8

Tip: Set global.env.EMBEDDING_MODEL_NAME to pick the default embedding model for both the multimodal embedding service and DataPrep. When deploying the unified summary + search mode, also set global.env.TEXT_EMBEDDING_MODEL_NAME and flip global.embedding.preferTextModel to true so the chart enforces the text embedding requirement automatically. Review the supported model list in supported-models before choosing model IDs.

Note: multimodal-embedding-ms and vdms-dataprep share the same PVC for model/cache storage. If you enable GPU for one of them, enable it for the other as well (global.gpu.multimodalembeddingmsEnabled=true and global.gpu.vdmsdataprepEnabled=true). Mixing GPU/CPU modes between the two causes the GPU pod to wait forever because the shared PVC can only be attached to a single node at a time. The Helm chart validates this pairing and will fail the install/upgrade when the flags don’t match while both services are enabled.

Unified-mode GPU examples:

  • VLM search + MME + DataPrep on GPU: set global.gpu.vlminferenceEnabled=true, global.gpu.multimodalembeddingmsEnabled=true, global.gpu.vdmsdataprepEnabled=true.

  • OVMS summary + MME + DataPrep on GPU: set global.gpu.ovmsEnabled=true, global.gpu.multimodalembeddingmsEnabled=true, global.gpu.vdmsdataprepEnabled=true. In each case MME and DataPrep must share the same GPU setting, otherwise Helm blocks the deployment.

3. Build Helm Dependencies#

Navigate to the chart directory and build the Helm dependencies using the following command:

helm dependency update

4. Set and Create a Namespace#

We will install the helm chart in a new namespace. Create a shell variable to refer a new namespace and create it.

  1. Refer a new namespace using shell variable my_namespace. Set any desired unique value.

    my_namespace=foobar
    
  2. Create the Kubernetes namespace. If it is already created, creation will fail. You can update the namespace in previous step and try again.

    kubectl create namespace $my_namespace
    

NOTE : All subsequent steps assume that you have my_namespace variable set and accessible on your shell with the desired namespace as its value.

5. Deploy the Helm Chart#

At present, there are 4 use-cases for Video Search and Summarization Application. We will learn how to deploy each use-case using the helm chart.

NOTE : Before switching to a different use-case always stop the current running use-case’s application stack (if any) by uninstalling the chart : helm uninstall vss -n $my_namespace. This is not required if you are installing the helm chart for the first time.

Use Case 1: Video Summarization Only (Using VLM Microservice)#

Deploy the Video Summarization application:

helm install vss . -f summary_override.yaml -f user_values_override.yaml -n $my_namespace

NOTE : Delete the chart for installing the chart in other modes helm uninstall vss -n $my_namespace

Use Case 2: Video Summarization with OVMS Microservice (OpenVINO Model Serving)#

If you want to use OVMS for LLM Summarization, deploy with the OVMS override values:

helm install vss . -f summary_override.yaml -f ovms_override.yaml -f user_values_override.yaml -n $my_namespace

Note: When deploying OVMS, the OVMS service may take more time to start due to model conversion.

Use Case 3: Video Search Only#

To deploy only the Video Search functionality, use the search override values:

helm install vss . -f search_override.yaml -f user_values_override.yaml -n $my_namespace

Use Case 4: Unified Video Search and Summarization#

To deploy the combined video search and summarization functionality, use the unified override values:

helm install vss . -f unified_summary_search.yaml -f user_values_override.yaml -n $my_namespace

Requirement: Before installing the unified stack, populate global.env.TEXT_EMBEDDING_MODEL_NAME and set global.embedding.preferTextModel=true (the supplied unified_summary_search.yaml does this for you). The chart will raise an error if the text embedding model is omitted while unified mode is enabled. Review the supported model list in supported-models before choosing model IDs.

GPU Tip: In unified mode the multimodal-embedding-ms and vdms-dataprep pods always share the same PVC, so either enable GPU for both (global.gpu.multimodalembeddingmsEnabled=true and global.gpu.vdmsdataprepEnabled=true) or keep both on CPU. Mixing GPU/CPU settings leaves the GPU pod pending because the shared PVC cannot mount on two nodes simultaneously, and the Helm chart blocks such mismatches during install/upgrade.

Step 6: Verify the Deployment#

Check the status of the deployed resources to ensure everything is running correctly:

kubectl get pods -n $my_namespace

Before proceeding to access the application we must ensure the following status of output of the above command:

  1. Ensure all pods are in the ā€œRunningā€ state. This is denoted by Running state mentioned in the STATUS column.

  2. Ensure all containers in each pod are Ready. As all pods are running single container only, this is typically denoted by mentioning 1/1 in the READY column.

IMPORTANT NOTE : When deployed for first time, it may take up-to around 50 Mins to bring all the pods/containers in running and ready state, as several containers try to download models which can take a while. The time to bring up all the pods depends on several factors including but not limited to node availability, node load average, network speed, compute availability etc.

IMPORTANT NOTE : If you want to persist the downloaded models and avoid delays pertaining to model downloads when re-installing the charts, please set the global.keepPvc value to true in user_values_override.yaml file before installing the chart.

Step 7: Accessing the application#

Nginx service running as a reverse proxy in one of the pods, helps us to access the application. We need to get Host IP and Port on the node where the nginx service is running.

Run the following command to get the host IP of the node and port exposed by Nginx service:

vss_hostip=$(kubectl get pods -l app=vss-nginx -n $my_namespace -o jsonpath='{.items[0].status.hostIP}')
vss_port=$(kubectl get service vss-nginx -n $my_namespace -o jsonpath='{.spec.ports[0].nodePort}')
echo "http://${vss_hostip}:${vss_port}"

Copy the output of above bash snippet and paste it into your browser to access the Video Search and Summarization Application.

Step 8: Update Helm Dependencies#

If any changes are made to the sub-charts, always remember to update the Helm dependencies using the following command before re-installing or upgrading your helm installation:

helm dependency update

Step 9: Uninstall Helm chart#

To uninstall the Video Summary Helm chart, use the following command:

helm uninstall vss -n $my_namespace

Updating PVC Storage Size#

If any of the microservice requires more or less storage than the default allotted storage in values file, this can be overridden for one or more services.

Updating storage for VDMS-Dataprep and MultiModal Embedding Service#

Set the required sharedClaimSize value while installing the helm chart.

For example, if installing chart in search only mode :

helm install vss . -f search_override.yaml -f user_values_override.yaml --set sharedClaimSize=10Gi -n $my_namespace

If installing the chart in the combined Video Search and Summarization mode :

helm install vss . -f unified_summary_search.yaml -f user_values_override.yaml --set sharedClaimSize=10Gi -n $my_namespace

Updating storage for other microservices#

To update storage for other microservices we can, override the corresponding claimSize value in the main chart values file, while installing the chart.

For example, for updating storage for VLM-Inference Microservice in Video Summarization mode :

helm install vss . -f summary_override.yaml -f user_values_override.yaml --set vlminference.claimSize=50Gi -n $my_namespace

Similarly, for updating storage for OVMS in Video Summarization mode, we can install the chart in following ways :

helm install vss . -f summary_override.yaml -f user_values_override.yaml -f ovms_override.yaml --set ovms.claimSize=10Gi -n $my_namespace

Let’s look at one more example, for updating storage for Minio Server in the combined Video Search and Summarization mode :

helm install vss . -f unified_summary_search.yaml -f user_values_override.yaml --set minioserver.claimSize=10Gi -n $my_namespace

If not set while installing the chart, all services will claim a default amount of storage set in the values file.

Verification#

  • Ensure that all pods are running and the services are accessible.

  • Access the Video Summarization application dashboard and verify that it is functioning as expected.

  • Upload a test video to verify that the ingestion, processing, and summarization pipeline works correctly.

  • Check that all components (MinIO, PostgreSQL, RabbitMQ, video ingestion, VLM inference, audio analyzer) are functioning properly.

Troubleshooting#

  • Pods not coming in Ready or Running state for a long time.

    There could be several possible reasons for this. Most likely reasons are storage unavailability, node unavailability, network slow-down or faulty network etc. Please check with your cluster admin or try fresh installation of charts, after deleting the PVC (see next issue) and un-installing the current chart.

  • All containers Ready, all Pods in Running state, application UI is accessible but search or summarization is failing.

    If PVC has been configured to be retained, most common reason for application to fail to work is a stale PVC. This problem most likely occurs when helm charts are re-installed after some updates to helm chart or the application image. To fix this, delete the PVC before re-installing the helm chart by following command:

    kubectl delete pvc vss-shared-pvc -n $my_namespace
    

    If you have updated the global.pvcName in the values file, use the updated name instead of default PVC name vss-shared-pvc in above command.

  • If you encounter any issues during the deployment process, check the Kubernetes logs for errors:

    kubectl logs <pod-name> -n $my_namespace
    
  • For component-specific issues:

    • Video ingestion problems: Check the logs of the videoingestion pod

    • VLM inference issues: Check the logs of the vlm-inference-microservice pod

    • Database connection problems: Verify the PostgreSQL pod is running correctly

    • Storage issues: Check the MinIO server status and connectivity

  • Some issues might be fixed by freshly setting up storage. This is helpful in cases where deletion of PVC is prohibited by configuration on charts un-installation (when global.keepPvc is set to true):

    kubectl delete pvc <pvc-name> -n $my_namespace
    
  • If you’re experiencing issues with the Hugging Face API, ensure your API token global.huggingfaceToken is valid and properly set in the user_values_override.yaml file.