# Install Guide Ubuntu 24.04 on WSL2 This page describes steps required to install Deep Learning Streamer Pipeline Framework on Ubuntu, when hosted on a Windows machine using WSL2. ## On Windows Host System ### Step 1: Update the GPU drivers Download and install the latest Intel® GPU drivers from [intel-arc-iris-xe-graphics-windows](https://www.intel.com/content/www/us/en/download/785597/intel-arc-iris-xe-graphics-windows.html) ### Step 2: Install WSL Open a PowerShell prompt as an Administrator and run ```bash wsl --install ``` or ```bash wsl --update ``` in case you have installed it before. Visit [install-ubuntu-wsl2](https://documentation.ubuntu.com/wsl/en/latest/howto/install-ubuntu-wsl2) in case of any Ubuntu-WSL2 installation issues. ### Step 3: Install Ubuntu 24.04 LTS Open a PowerShell prompt as an Administrator and run ```bash wsl --install Ubuntu-24.04 wsl --set-default Ubuntu-24.04 ``` ## On Linux WSL System Open an Ubuntu WSL terminal and follow the instructions. ### Step 1: [OPTIONAL] Setup proxy Edit `/etc/bash.bashrc` and add two lines with http_proxy and https_proxy: ```bash export http_proxy="" export https_proxy="" ``` Open visudo: ```bash sudo visudo ``` After the line with: `Defaults env_reset`, add another line with: ```bash Defaults env_keep = "http_proxy https_proxy" ``` Apply changes by sourcing the file: ```bash source /etc/profile ``` ### Step 2: Provide access to the `/dev/dri/renderD12*` directory Check if the `/dev/dri/renderD12*` directory exists. The output from the `ls` command should be similar to this: ```bash ls -ltrah /dev/dri total 0 drwxr-xr-x 3 root root 100 Mar 24 16:00 . crw-rw---- 1 root render 226, 128 Mar 24 16:00 renderD128 crw-rw---- 1 root video 226, 0 Mar 24 16:00 card0 drwxr-xr-x 2 root root 80 Mar 24 16:00 by-path drwxr-xr-x 16 root root 3.5K Mar 24 16:00 .. ``` If `/dev/dri/renderD12*` is not there, run: ```bash sudo modprobe vgem ``` and check again. ### Step 3: Add a user to the `render` group To use a GPU device, the user has to belong to the `render` group. Follow these steps: ```bash sudo gpasswd -a ${USER} render newgrp render ``` Confirm that the list of groups to which you belong includes the `render` group: ```bash groups ${USER} ``` ### Step 4: Install drivers ```bash cd $HOME wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | sudo gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg echo 'deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu noble unified' | sudo tee /etc/apt/sources.list.d/intel.gpu.noble.list sudo apt update sudo apt-get install -y libze-dev intel-opencl-icd intel-media-va-driver-non-free libmfx1 libvpl2 libegl-mesa0 libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all ``` ### Step 5: Add OpenVINO™ Toolkit and Deep Learning Streamer repositories ```bash cd $HOME sudo -E wget -O- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB | gpg --dearmor | sudo tee /usr/share/keyrings/intel-gpg-archive-keyring.gpg > /dev/null sudo -E wget -O- https://apt.repos.intel.com/edgeai/dlstreamer/GPG-PUB-KEY-INTEL-DLS.gpg | sudo tee /usr/share/keyrings/dls-archive-keyring.gpg > /dev/null echo "deb [signed-by=/usr/share/keyrings/dls-archive-keyring.gpg] https://apt.repos.intel.com/edgeai/dlstreamer/ubuntu24 ubuntu24 main" | sudo tee /etc/apt/sources.list.d/intel-dlstreamer.list sudo bash -c 'echo "deb [signed-by=/usr/share/keyrings/intel-gpg-archive-keyring.gpg] https://apt.repos.intel.com/openvino/2025 ubuntu24 main" | sudo tee /etc/apt/sources.list.d/intel-openvino-2025.list' ``` ### Step 6: Install Deep Learning Streamer Pipeline Framework ```bash sudo apt update sudo apt install intel-dlstreamer ``` ### Step 7: Download the yolo11s model If you want to execute sample pipelines, download the yolo11s model as the sample one for these pipelines: ```bash mkdir $HOME/models export MODELS_PATH=$HOME/models sudo apt install -y python3.12-venv /opt/intel/dlstreamer/samples/download_public_models.sh yolo11s coco128 ``` ### Step 8: Execute sample pipelines The Deep Learning Streamer Framework is ready to use. Now you can source the environment setup: ```bash source /opt/intel/dlstreamer/scripts/setup_dls_env.sh ``` and execute a sample pipeline with inference on the CPU: ```bash /opt/intel/dlstreamer/scripts/hello_dlstreamer.sh --device=CPU ``` > **NOTE:** There is no current support for Video Acceleration API (VA-API) within WSL. ------------------------------------------------------------------------ > **\*** *Other names and brands may be claimed as the property of > others.*