Get Started Guide#

  • Time to Complete: 10 mins

  • Programming Language: Python

Get Started#

Prerequisites#

Step 1: Build#

Clone the source code repository if you don’t have it

git clone https://github.com/open-edge-platform/edge-ai-libraries.git -b release-1.2.0
cd edge-ai-libraries/microservices

Run the command to build image:

docker build -t retriever-milvus:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg no_proxy=$no_proxy -f vector-retriever/milvus/src/Dockerfile .

Step 2: Prepare host directories for models#

mkdir -p $HOME/.cache/huggingface
mkdir -p $HOME/models

Step 3: Deploy#

Option2: Deploy the application with the Milvus Server deployed separately#

If you have customized requirements for the Milvus Server, you may start the Milvus Server separately and run the commands for retriever service only

cd deployment/docker-compose/

source env.sh # refer to Option 1 for model selection

docker compose -f compose.yaml up -d

Sample curl commands#

Basic Query#

curl -X POST http://<host>:$RETRIEVER_SERVICE_PORT/v1/retrieval \
-H "Content-Type: application/json" \
-d '{
    "query": "example query",
    "max_num_results": 5
}'

Query with Filter#

curl -X POST http://<host>:$RETRIEVER_SERVICE_PORT/v1/retrieval \
-H "Content-Type: application/json" \
-d '{
    "query": "example query",
    "filter": {
        "type": "example"
    },
    "max_num_results": 10
}'

Learn More#